"Fue la India la que nos brindó el ingenioso método de expresar todos los números mediante diez símbolos, cada uno de los cuales recibía un valor de posición, así como un valor absoluto; una idea profunda e importante que ahora nos parece tan simple que ignoramos su verdadero mérito. Pero su misma simplicidad y la gran facilidad que ha proporcionado a los cálculos colocan nuestra aritmética en el primer puesto de los inventos útiles; y apreciaremos aún más la grandeza de este logro cuando recordemos que escapó al genio de Arquímedes y Apolonio, dos de los hombres más grandes de la antigüedad."
Pierre-Simon Laplace (1749-1827)
La nomenclatura numérica romana.
Los romanos no tenía símbolos para números mayores que 100, aunque en épocas más recientes se comenzó a utilizar una barra encima para denotar la cantidad representada por la letra multiplicada por 1000, por ejemplo $$\overline{V}= 5\,000.\; \overline{X}= 10\,000 \; \text{ y } \;\overline{C}= 100\,000. $$
La notación de cada número se regía por las siguiente reglas:
- Si se escribe un número menor delante de otro mayor, significa que el segundo se le está restando el primero. Por ejemplo, XL=40, es decir 50-10=40.
- Por el contrario si se escribe un numero mayor seguido de un número menor, se entiende que se están sumando. Por ejemplo, LX=60, es decir 50+10=60.
- Símbolos iguales se pueden utilizar de hora consecutiva hasta un máximo de tres veces. Por ejemplo, XXX=30.
- No es posible restarle a un número, otro que sea menor que un décimo del valor del primero. Por ejemplo, 99 se escribe XCIX y no IC.
Suma de números romanos.
La suma de números en nomenclatura romana se rige por la siguiente sucesión de indicaciones, que ejemplificamos realizando la suma de 145=CXLV más 79=LXXIX, la que en notación indo-arábiga es 224= CCXXIV:
$$\begin{array}{rr} & 145 \\ + & 79 \\ \hline & 224 \end{array}\\ \begin{array}{rcll} CXLV + LXXIX & = & CXXXXV+LXXVIIII & \text{1.- Convertir todas la diferencias en sumas.} \\ & = & CXXXXVLXXVIIII & \text{2.- Adjuntar las dos listas de simbolos.} \\ &= & CLXXXXXXVVIIII & \text{3.- Ordenar en forma decreciente los simbolos.} \\ & & & \text{4.- Hacer sumas internas de derecha a izquierda.} \\ &= &CLXXXXXXXIIII & \; \; \;\text{4.1.-Sustituir VV por X.} \\ &= &CLLXXIIII & \; \; \; \text{4.2.-Sustituir XXXXXXX por LXX.} \\ &= & CCXXIIII & \; \; \; \text{4.3.- Sustituir LL por C.} \\ & & & \text{5.- Convertir a resta o suma donde sea necesario.} \\ & = & CCXXIV & \; \; \;\text{Sustituir IIII en IV.} \\ \end{array}$$
Diferencia de de números romanos.
La diferencia de números romanos es algo más simple que la suma. Ejemplificaremos con la diferencia 145-79=66=LXVI. $$\begin{array}{rcll} CXLV - LXXIX & = & CXXXXV-LXXVIIII & \text{1.- Convertir todas la diferencias en sumas.} \\ & & & \text{2.- Eliminar los símbolos comunes a ambos números.} \\ &= & CXX-LIIII &\; \; \;\text{2.1.- Eliminar XX y V en ambos.} \\ &= & LLXX-LIIII&\; \; \;\text{2.1.- Como L es el mayor símbolo de segundo valor,} \\ &= & LXX-IIII &\; \; \;\text{expandimos C y eliminamos la L repetida.} \\ &= & LXIIIIIIIIII-IIII&\; \; \;\text{2.3._ Siguiendo el procedimiento, expandimos X,} \\ &= & LXIIIIII &\; \; \;\text{ y eliminamos las IIII repetidas.} \\ & & & \text{3.- Convertir a resta o suma donde sea necesario.} \\ & = & LXVI & \; \; \;\text{Sustituir IIIIII por VI.} \\\end{array}$$
Producto de números romanos.
El producto de números en notación romana es una operación mucho más compleja que las dos anteriores. Podemos pensar que el producto no es más que sumas sucesivas, pero esto es muy engorroso si tratamos con números grandes. El procedimiento que sigue, asume que dado un número romano, sabemos calcular la parte entera de su mitad (que por simplificar llamaremos mitad) y su buplo. Como ejemplo realizaremos el producto de 57 * 21=1197, en números romanos LVII * XXI= MCXCVII.
1.- Construir la tabla de mitades y duplos.
| Mitades |
Duplos | ||
|---|---|---|---|
| LVII | (57) | XXI | (21) |
| XXVIII | (28) | XLII | (42) |
| XIV | (14) | LXXXIV | (84) |
| VII | (7) | CLXVIII | (168) |
| III | (3) | CCCXXXVI | (336) |
| I | (1) | DCLXXII | (672) |
2.- Eliminar las filas donde las mitades son pares.
| Mitades |
Duplos | ||
|---|---|---|---|
| LVII | (57) | XXI | (21) |
| VII | (7) | CLXVIII | (168) |
| III | (3) | CCCXXXVI | (336) |
| I | (1) | DCLXXII | (672) |
3.- Sumar los números que han quedado en la columna de la derecha, siguiendo el procedimiento de suma que hemos visto anteriormente.$$XXI+CLXVIII+CCCXXXVI+DCLXXII=MCXCVII.$$
La realización de esta operación paso a paso, según el procedimiento de suma visto anteriormente, se deja al lector como ejercicio de reafirmación de dicho procedimiento.
Cociente de números romanos.
- Si la diferencia entre los números a dividir no era significativamente grande, lo que se hacía era restar al dividendo el divisor reiteradamente hasta llegar a un número menor que el divisor (el resto). La cantidad de veces que hayamos restado será la división. Por ejemplo, para realizar la división $$\frac{145}{57}=\frac{CXLV}{LVII},$$ lo que hacemos son las restas sucesivas:$$CXLV-LVII=LXXXVIII\;\; (88) , \;\;\;\; LXXXVIII-LVII=XXXI\;\; (31), \;\;\;\; XXXI<LVII$$
Cociente II=2, pues hemos restado dos veces y resto XXXI. La realización de las dos diferencias anteriores, según el procedimiento para diferencias visto anteriormente, se deja al lector como ejercicio. - Otra variante consistía en previamente buscar factores comunes a dividendo y divisor, simplificar los dos números y aplicar el procedimientos anterior a los números simplificados que serían mucho menores.
Nota: Sugerimos al lector consultar en este blog el artículo El Sistema de Numeración MAYA.




